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Many of the current research problems in chemical engineering concern 

the simultaneous transfer of heat and mass in flow systems,   sosMti£oes 

further complicated by chomjcai reactions.    Such £li>w problems are described 

by the :«equr.tlons oi change" of fluid mechanics.    These basic differential 

equations iorm {he starting point for the development of a number of topics 

of direct interest to chemical engineering science,   such as: (i) the volution 

of lamina-s* problems in fluid flow,   diffusion,   and hc-»t flow; (ii) the siudy of 

turbulent flow and the eddy transport processes; (iii) the theory of boundary 

layers and films; (iv) the study of flow in particulate systems; (v)   the applica- 

tions and limitations of analogies between m^ss,   momentum,   and en&rgy 

transport; and (vi) the dimensional analysis of complex flow problems wiih 

heat and mass transfer,   which cannot be solved analytically.    Because »f the 

paramount importance of the equations of change in basic chemical engineering 

studies,   w* summarire these equations here in their most complete torn..    We 

further point out the major relatxonchips between the equations of change,   the 

fiujt vectors,   ih* transport coefficients,   and the forces between molecules. 

Ths equations of change of fluid mechanics comprise the equations of 

continuity for *ach of the chemical species,  the equation of motion,  anil the 

T Part of the material for this article is taken from "Molecular Theory of 
Gaues and Liquids, •• by Hirschfelder,  Curtiss,   and Bird (18}.    Jr. this recent 
book (hereinafter referred to as MTGL) the equations of change are discussed 
in detail,   and their applications to the mathematicai theory of £!am<*8,   ahock 
w«*ves,   sound propagation,   and detonations are presented. 
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equation of energy balance.    From the. first of these equations coaw the basic 

'   • >'       '     •     . 

equation* Cor diffusion: from the second comes th«  basis for tfe* study of 

fluid flow; and from tba laat equation comes the starting p»iat fo» the B4».v3y 

of 1icat fl&w.    Moat of the chemical engineering unit operation* involve erw or 

more of these processes.    Hence advances in the fundamental understanding 

of the' various irreversible processes occurring in the clv&micai•aginearing 

oporationa depend on the correct interpretation and uae of, the• equssiuns of 

change* 

rhese equations of change are coupled,  nonlinear differential equations, 

aad oae might-well doubt the usefulness of such a complex «ai of «quations 

bny&nd the pedagogical value of providing a cor   act formal repremeni^iicn 

of a number of related fields.    Of principal interest to the chemical engineer 

are the solution* ta theae equations.    Thcue solutions can be divided into 

three eategeriea:   analytical,  numerical,   and experimental.    Analytical *olu- 

tia>im can be obtained for very simple problems only.    It iff navertholasf just 

tb&ce simple ablutions which are the handy formulae for every-day calculations 

Poisaaille's law, Stokes* law, Bernoulli** equation,  aud tut. formulae for mass 

transfer coefficients are a few examples.    Other simple wolrtiona,  which are 

somewkai less familiar, describe ilam ns)£? rotating,or ^»cili*tin» dimes,  flow 

cf p]==-ics through tubes,  temperature profiles produced by vijeous heat ef- 

fects,  temperature distributions in a hot fluid entering a cold pipe sshe Gsmsis. 

problem),  ar..d the thickness of fallj-g filmb in wetted-wall fowey;*.    Numerical 

awdutfona can frequently be obtained when problems ara too complex for 

analytical solutions.    The current developments in high spoed computing 

techniqueii open up tremendous new frontiers for the further development of 
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fluid mechanics ami transport proc«ts«s a* applied to chemical aiigii».e«?ii?g. 

Soms examples of problems attacked by numerical methods are fcke study of 

flame propagation,   the formation of shock waves,  £k>*» s.krouga aoaaieA,  and 

flow around solid objects.    Experimental solutions to exteeaasly* cojRnptax 

problems form tie basis for many industrial design calculation** tn diffusion i! 

opera'.ions,   heat transfer,   and chemical kinetics.    The experiment?.! d*ta can 

usually be correlated in terms of ceveial dirnenaionless groups.    The minimum 

number of correlating parameters needed can be deduced directly ffora the 

equationiof change when they are written in dimer.eiunless form.    Such methods 

have proved quite useful in analyzing the flow aiound cylinders,   the evaporation 

cf droplets,   and the flow patterns of convection.    In fact,   the dimensional analy- 

sis of the basic differential equations gives the justification for the met ion 

factors,   drag factors,   and j-factors.    Hence even for problems with turbulent 

flow in complex geometries the equations of change can be useful even though 

their analytical or numerical solution would be impossible. 

In this paper we begin by giving the equations of change in thiir most 

general form in term* of the flux vectors      Most bocks on fluid mechanics 

do not give theae equations for fluid mixtures or for eyetees* wiih temperature 
" i i 

gradients.    Frequently these equations are quoted incorrectly and Incompletely, 

it is hoped thai the summary given here will be of use.    W© ne^it proceed to 

give the expression* for the flux vectors in terms of the transport coefficients 

It is at this stage where approximations are generally neiade concerning the 

mechanism of the transport processes.    The  general results of the thermo- 

dynamics of irreversible pro .esses are set forth here.    Final Ay we discuss 
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the transport coefficient? add their relation to inter molecular for-s^s.    Since 

the chemical engineer has to deal with fluids of widely varying physical 

properties,  this aspect of fluid mechanics in of considerable importance. 

Inasmuch as this subject has already been treated quite extensively in a-"- 

recent review article (1),    only the main points' of the .-Ikicusaioa are given 

here. 
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1 •    The Equations of Change in Terms of the Fiuxea 

The behavior of a flawing fluid in which heat and n&ia transfer i* taking 

place is described by the equation of change,   along with the thermal and 

caloric equations of state.    The equations of change are differential equations 

which describe the changes in the macroscopic properties of tfe* fluid (for 

example,  th<: local density,   stream velocity,   and temperature) in terms of 

the flux of man,   the flux of momentum,  the flux of energy,   and the chemical 

kinetics.    First we discuss these equations and give the meaning of the various* 

terms contained therein; then we proceed to .Indicate the Limit e of their ap- 

plicability . 

a.    Summary of the Equations of Change 

Th* basic equations of continuity,   motion,  and energy balance correspond 

to the fundamental principles of conservation of mass,   momentum,   and energy 

respectively.    They have been derived fsr vety general conditions both in 

classical and quantum theory.      In terms of the fluxes,  these equation* of 

change for a fluid mixture containing   nc   chemical species are: 

Equation of continuity for component   i : 

Dp4/Dt =  -^(7-ir) - (V.j,) + Ki       iAUfi,      (tL)f 

Equation of continuity for the fluid as a whole: 

Dp/Dt   •   - p (V-£) (11 b) 

T The derivation of the equations of change from the Boltxmann equation for 
dilute inonntomic gases is given in MTGI,   §"?. 2-c, d, •.     The analogous 
derivation f»r densi« monatomic gas«a 1# given in MTGL,   §*9. 4d. 
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SJgggJJB of motion: 

Br/I* « - 0/j>X* p) + (t/f) Z #5 (12) 
1=1 

Kfjggtjgg gg energy balance; 
R, 

To these eqsaikms the snbstanUal derivative   0/_Jt * c,/d» + (v. V)   repreaents 

the time rate of change following a fluid element which is moving with a 

valocity   v. .   The sy mbols   j. .   p ,    and   q   represent the fluiess of mass. 
•r — 

mementam, and energy with respect to the mass overage wlocit?   v ,    Tfecae 

flaxes may b« broken down into several part*: 

£ ->| + if <w> 

Thai is, the maea flax incladee components due to gradient* in the cvnc  aU« • 

ties, tessperaiare, and pressure and an additional component due to external 

forces.   The wnwmentnna flax (pressare tensor) includes a te*m associated 

with tha static pressure   p   and another aeaociated with, vieccoe sir^seea. 

^ » should be aoentiflsed thai the   6   im K*.. (1. J) t« t&c tsornaadyaarnic late rue) 
easvgy (par anit maasf,  and does not include tha ki»^**c"*ss*gy associated 
with the stream velocity or the potential energy sssociatad with the esftejraa! 
forces - 

-£   Tha syinlW   Kj   (tends fcr the net rate of products of chemical species   i 
H* chemical re&ctiwa, in wn4f.« of  gm/inc. 
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AuA vh« energy flux Includes terms due to temperature and concentration 

gradients,   a term which accounts for the energy flux accompanying diffusion, 

and the energy flux due to radiation.    Explicit expressions for these various 

fluxes ar« given in §2. 

According to i*.q.   (1. la) the mass density of species   1   contained in a 

fluid element changes tov three reasons:   the first term on the right indicates 

the change due to the fluid expansion; the second term account* for the change 

due to diffusion processes (this includes ordinary,   thermal,  pressure and 

forced diffusion); and the third term represents the change due to the pxoduc- 

tion or loss of species   i   by chemical reactions.    When tlis    n      equations 

given in Eq.  (1. la) are added together,  one obtains the overall equation of 

continuity. Eq.  (1. lb).    The latter indicates that the density of the fluic   as 

a whole changes only because of the expansion of the fluid a* indicated by the 

single term on the right. 

According to Eq.   (1.2) the velocity of the fluid element undergoes a 

change because of the gradient in the prssaur* tensor and also because of 

the external forces acting on the various chemical species praseut.    Si:»ce 

the pressure tensor may be written as the Bum of two terms,   the first term 

on the right hand side of Eq.  (1.2) contains two terms:    -(l.V) Vp   which 
,..        •    • • '•'•'- 

represents the acceleration of a fluid element because of a gradient in the 

static pressure; and    ~(l/p)(Y-P     )   which gives the deceleration of the 

tiuid ela&oant because of internal friction (viscous stresses). 

According fce Eq,   (I. 3) the internal energy ch£ .'gaa for the follcwiug 

reasons:   the first term on the right represents the change due to energy 
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fiux (this includes thermal conduction,   energy flux due to a concentration 

gradient,   energy transport by molecular diffusion,   and energy transport 

by radiation); the second term Includes both the energy change due to pV- 

«ork,    -(l/p)p(7.v) ,    and that due to viscous dissipation ,    -(1 /pMp'v': Vy) ; 

and the third term describes the change due to the work done by the diffusing 

molecules in overcoming the external forces. 

The equations of charge along with the appropriate boundary conditions 

i'urm the starting point for any mathematical study of fluid flow,   heat transfer, 

and diffusion.    For the complete statement of the problem,  one also needs to 

specify: 

P -   p(T'P<, ?*>••• J\) (M) 

U - ti(T,Pt,ft,...pn) 

which are the thermal and c   loric equations of state respectively.    When 

explicit expressions are introduced for the flux vectors in terms of the 

transport coefficients,   then there appear in the aquations of change the co- 

efficient* of diffusion,   viscosity,   and thermal conductivity; the dependence 

of these quantities on the temperature and the mas* -densities of the various 

species present also have to be specified in the solution of au nctual problem. 

if The viacou* dissipation term* have b«en included in the analytical solution 
of only several problems:    flow ir. capillary tubes by Hausenblas (17)   and 
by Brinkman (4); flow inconcentric cyliiadere by Weltmann and Kuhn (43) 
and by  RK-.Sc (2); flow near a rotating plate by Millaaps and Pohlhauseo (30). 
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b.    TheEguatione of Change for Temperature and Entropy 

The equation at energy balance as given In 15q.  (1. i) la not In lift moat 

useful lax a-, tor many problems.    In heat transfer problems,   for tisaraple, 

it la eonaldarably aiore convenient to rewrite the energy equation In terror 

of the temperature.    And in problems on sound wave*,   detonations,   and 

flow through nozzles,  it la more appropriate to work with an «q«£>ti-»n of 

change for entropy.    Furthermore the entropy equation ia i«np«2-tant. in 

the formulation of the thermodynamics of irreversible p«*ce«»e«. 

The aquation of change for temperature may be attained by uaing Eq. 

(1. 8) to rewrite Eq.  (1. J).    When no aacumptioaa are m*4*, fiafr-final 

result ia-, 

P^(Dtyi>t) « -(v-g) - q>:W) +Cp-T(ip'Ajr)y(7.sr) 

+ T £r(7.K) + Kt][(0t/m0 + (p-T(^T»Cl*/Oi)]    M 

t£(frS) 
in which the derivative   (dp/cT)   is taken rt constant composition snd 

constant., •solame.    For an Ideal gas the terms containing   (p - T(op/oT)) 

v*niahs  and for a fluid consisting of a single chemical epacJaa, ihs. last 

two term* (thc«« involving the summations over   i ) neod not be couaidorfcd. 

Hence in roast heat transfer problems with fluid f)»~7, ®ae hac the equa- 

tions «»£ continuity (Eq.  (1. la)),  the equation of motion (Eq.  (1. 2,)),  and the 

equation of energy balance in term* of the temperature (Eq.  (1 .9)),   which 

have, to be solved along with the appropriate initial and boundary conditions. 
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Furthermore one needs the thermal equation of state (F.q.   (1.7))   and the 

A 

equation for   CV(T, pi, a^. ,    ,p   )   which ie obtainable from the caloric 

equation of state in £q.   (1. 8). 

The equation of change for entropy ran be obtained from the equations 

cf change as given in Eqs.   (1.1,   1.2,   aud 1.3)   and the differential relation 

A A 
TdS = dU + pd(l/p) -   Zl (Ui/miMpi/p) ,   in which   \li   is the chemical 

potential   (or partial molal Gibbs free energy   5i).    The equation of change 

for entropy can be written in the form 

p(DS/Dt) -    -(V'ff)   + 3 iW) 

in which  *r  is the fiux of entropy aud   g   ia the rate of production of entropy. 

These quantities may,   after considerable manipulation, be written in the form: 

cr -    (1/T)qW +  JL(Si/mi)U (Ui)i 

3 -   -0/T)JT (ji-AO - (1/T)(PW:%) 
ft 

-(l/T)(c,(k>.VlnT)   +(l/T)£rsY5 
S«) 

f  All partial molal quantities used in this article are on a "per molecule" basia. 
This somewhat unusual convention is employed because of the fact that it is 
customary to define most kinetic theory quantities on this boots.    The uac of 
thermr.dynamic quantities per molecule then eliminates the appearance of 
Avogadro** number throughout the equations. 

T    Here the total energy flux haa boos arbitraTilv separated into two parts,  thua: 

3 - a'-"* * 3W (i.ni) 

f*«   qW+qW+V"     and    cm, Z(Ni/m;)i; (1.11 bj 
-J — — ~ ..." *„• >* 
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iii. which   rB   and   Y8   are the net rate and the "chemical affinity* of tba   a**1 

2 
chemical reaction (the&e qu.41ni.ii.u3s are defined in   a footnote below) ),  and 

4i    U: ru 

4i-(l/w4)^(^/dpj)Ti0 VPj.   + (7t/im)7f - ft (M$ 

The quantity   A •    may   be regarded a» a driving force which includes the 

concentration gradient,   the pressure gradient,   and the external forces. 

Equation (1. 11) indicates, that the entiopy flux is made up of two components; 

the first ter»n is the reversible flux, of entropy due to heat flow,   and the second 

term is the flow incidental to the diffuaio*' processes.    Eq.   (1. 12) indicate, 

that the rate of irreversible entropy production is a result of the various dis- 

sinative phenomena:   the first term is the contribution due to mass transfer. 

Suppose that the chemical kineticfc of the reacting mixtures may be 
described in term* of a set ot    :i.r    chemical reaction*!,  which may be 
written symbolically thus: 

Au[1] + A2i[2] + - -  BJ1] + bZi[?J +•» (ttta) 

in which     i      indicates the chemical formula for the   i      species and   A, 
and BiB   are the integral stoichjometrtc factors in the »*    reaction for the 
itk substance.    Then if   ka   and   k8   are the rate constants for the t"1 

forward and backward reactions respectively,    rs   &nd   Ys   are defined by: 

r. -   (k.f,*1' C-- ) - (kif,6" hl" - ) [%.wi 

Y, -  -Z(6h-M^i (nzc) 
in which the   fi   are fugs cities. 
The quantities     rg   and    Ya   are then "fluxes" and "driving forces" 
respectively. 
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t'ttm Mcood doe to viscous effects,   the third dv.e to heat transfer,   and the last 

du* to chemical reaction.    It should be noticed that according to F>.   (1. 12) 

the rate of entropy production    g   can be written as the sum of products 

of flux^c and driving forces (the latter are sometimes called •'affinities"). 

This is an important result which can be used in conjunction with the thermo- 

dynamics of irreversible processes to obtain information concerning the 

relation between the fluxeB and the transport coefficients.     This is discussed 

fttTiher in §2. 

c.    Applicability cf the Equations of Change 

Although the equations of change as given above are general and apply to 

any fluid,   they pya clearly useful oi.ly under such conditions that it is physical- 

ly meaningful to speak about point properties.    The definitions of local density, 

velocity,   and temperature arc reasonable   only if the fluid can be regarded as 

behaving as a continuum.    When there are large differences in the macroscopic 

quantities over distances of the oxder of a mean free path,   the distribution of 

th»s velocities of the molecules deviates considerably from a Maxwellian 

distribution,    under these conditions.   the concept* of local composition,   velocity, 

and temperature become meaningless.    Two well-known examples of a fluid under 

su-ch a condition are: (i) an extremely dilute gas (eve "Knudsen gas") In which the 

dimensions of the containing vessel or an object immersed in the BUS are of the 

same order of magnitude as the mean free path,   and (ii) a shock wave in wh'.ch 

the macroscopic properties as a function of the distance undergo, an abrupt change 

Within a distance of * few  mean flee paths.    In both these cases it is meaningless 

to speak of point values of the  macroscopic variables. 
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One might well question the applicability of th« equations of ch*r,ge Co the 

description of turbulent flow.    As the flow conditions changa is&m. laminar t6 

turbulent,   small eddies appear,   and there is superimposed on the overall 

flow a complex pattern of more or less random motions.    The dimensions 

of these eddies are always large compared to the mean tree pr.th,   so that 

the turbulent -motion is macroscopic rather than molecular.    Accordingly, 

the concept of the fluid as a continuum remains valid,   and the ordinary 

equations of change may be used.    In these equations the variables refer to 

instantaneous values at a point.    For most practical purposes,   however,  we 

are interested in the values of these quantities averaged over a time long 

compared with the period of fluctuations.    Hence,  in turbulent fh»w,   the 

equations of change given above are modified by time-averaging to obtain 

relations among the average macroscopic variables.    When this is done 

one obtains a. set of time-averaged equations of change which differ in two 

respects from the original equations:   (i) the variables and fluxes appearing 

ir. the equations are now time-averaged quantities^   sad (ii) there arc addi- 

tional terms associated with the correlations of the fluctuation* in the various 

physical properties (in the equation of motion,   for example,   one obtain* the 

"Reynolds stresses").    The explaining of those added   terms is one of the 

principal problems of turbulence.    The simplest theories for this are the 

mixing length theories,   which are analogous to the mean free path theories 

of elementary kinetic theories.    Another ever, simpler approach is to presume 

thai turbulent transport is analogous to laminar transport find thus to introduce 

the   fldcy coefficients cf diffusion,   viscosity,   and thermal conductivity.    TI?ese 
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quantities are not constants of the fluid,  but depend on the position in the fluid, 

thf Reynr.lds nuutber for the flow,  and alao on the scale of the turbulence.    Hence 

the yic of eddy transport coefficients is not too satisfactory.    A summary of 

the present "tat« ©£ experimental and Lhaoreiicil knowledge el the Reynolds 

stresses and eddy vineosity has been prepared by Schlichting (35); and the sub- 

ject of eddy diffusion le* summarised by Sherwood and Pigford (39).    Other 

recent work on mass and heat transfer in turbulent systems has been done nt 

California Institute of Technology by Schlinger,  Sage,   and   collaborators (8, 

36.   37). 

In flow systems consisting cf more than one phase,   such as one encounters 

in industrial conlactir ^ processes,  the equations of change are va' A in each of 

the phases concerned,  but the solutions to the equations of change have to "match 

up" at the interfaces between the phases.    At the present,  there is only msage*' 

knowledge as to ho*- the solutions to the c ^uations of change should be joined 

at the phase boundary,   inasmuch as very little is known about the mechanism 

of in.terpha.se mass,   momentum,   and energy transfer. 

Recently two groups at investigators have studied the problem of the 

mechanism of inter phase mass transfer.    Scott,   Tung,   and Dricfcamer (38) 

solved the differential equations for equimolal diffusion across fen Interface, 

taking into yieceunt the fact that the interface itself would provide an additional 

resistance to the diffusions! process.    Subsequent radio-tracer experiments 

of Tung and Drickamer (40) indicated that the interfacial resistance can in- 

fluence very markedly the concentration profiles during diffusion.     Another 

approach to the problem was taken by Entus«-rt and Pigford,   (13) who studied 
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absorption   in wetted wail towers in   terms of accommodation coefficients. 

They also concluded that interfacial resistance is of considerable importance. 

Certainly this question of the mechanism of interphase mMI-transfer needs 

further study.    One aspect of the subject of interphase B&MS-transfer has 

been exhaustively studied by chemical engineers,  namely that of correlating 

overall mass -transfrr data with flow variables according to dimensional 

considerations.    An excellent nummary and evaluation of this material has 

been given bv Sherwood and Pigford.  (39) 
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-''     The Fluxes in Terms of the Transport Coefficients 

The equations of change in terms of the flux vec'ors a« given in  §)  have 

been derived by means of nori' pqui librium statistical mechanics.    According 

to statistical mechanics the flux vectors in turn can be expressed in terms o< 

integrals which involve distribution functions.    Ultimately one would like to 

follow through this line of attack and obtain expreasu as for the distribution 

functions arui thereby express the flux vectors in terms of the forces between 

the molecules in the fluid and the various derivatives of the macroscopic 

properties.    The complete development of the connection between the flux 

vectors and the intermole rular for^^s has been   worked out. only for certain 

special types of molecules and for certain limited conditions:    (i) For the dilute 

menatomic gas the Chapman-Enskog theory {6} gives the flux vectors explicitly 

in terms of the traneport coefficients,   which in turn are expressed in terms 

of intermolecular forces as described in §4.    A considerable amount of 

computational work has been done for the dilute milticomponent monatomic 

gas mixtures with small gradients,   and it is possible to predict quite accurate 

iy the flow properties under both classical and quantum conditions,    (ii)   .^»>r 

the dilute polyatomic gas a general theory has been developed by Wang Chang 

and Uhlenbeck (42) and also by de noer (10) but no numerical results have yet 

been obtained whereby one can relate the transport: coefficients to the inter- 

snolecular forces.    ( iii)    For the dense monatomic gas formal results ha*e 

been obtained by Kirkwood and cuworkcrs    (21) and by Born and Greeti (3) 

but much work needs to be done in order to make these rit-aalls of practical 

value. 
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For A fluid made up of any kind of molecules and >mder any arbitrary 

conditions o£ temperature and pressure,   it is not possible  at the prescni time 

to uae statistical mechanics to obtain the form of the flux vectors and to derive 

expressions for the transport properties in t;rm« of inter molecular forces. 

For sucn a "general -fluid",   however,   a certain amount of information may be 

obtained from tha thermodynamics of irreversible processes.    It is possible 

to derive the form of the flux vectors,   and by means of the Onsager "reciprocal 

relations'* lu obtain certain relationships between the transport coefficient*. 

It should be emphasized,   however,   that the the r mo dynamic approach cannot 

lead to any expressions for the transport coefficients in terms of the molecular 

properties.    Hence we summarize In this section the most important useful 

results which are obtained about the flux vectors from the thermodynamics 

of irreversible processes and other sources. 

*•    The Theimodynamica of Irreversible Processes 

In Eq.   (1. 11) it was found that the rate of entropy production could be 

written as a sum of products of fluxes and driving forces.    That is: 

q   -    (1/T)  2L JnXn (2.1) 

in which the   J      are the various fluxes and the   X      arc the various driving 

forces or "affinities. "   These fluxes and force*! are summarized in Table I. 

In general,   any driving force can gi^e rise to any of the fluxes.    For example, 

if thrre is in a sytrt-r^n both a ma«« gradient *»d a temperature gradient,   the fol- 

lowing fluxes arc observed    (i) mass flux due to the concentration gradient 
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Table   I 

Fluxes and Forces in a Flowing Fluid 

ri«*   jn Force,    X n 

q(U 

-At 

- Vtf 

Nates:      The quantity    A  .    is defined in Eq.   (1. 13),   and   r      and     Y 

are defined in Eqs.   (1. 12b).    The   subscript   i   goes from   1 

to   nc   (the total ausabe? of chemical species present),  and   s 

goeB from   1   to   nr (the total number of chemical reactions 

taking place).    The quantities    r8   and   YB   are scalarst   j^ 

and   q*   '    and th»ir »K»nri»t*H fnTtets are vector quantities 

with three components each; and   p*v'   and    V*   are   second 

order tensors with nine components each.    Hence,   altogether 

we are concerned with   3n_ + nr + 12   fluwes and an equaJ 

number of forces. 
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(ordinary dlff-jsion); (ii) energy flax due to the temperature gradient {thermal 

conductivity); (ii*) mass flux due to the temperature gradient (theratal dif- 

fiuiiwu Oi  the "Soref   effect"); and (iv) energy flux due to the BSASS gradient 

(the diffusion-thermoeffect. o.- the "Dufour effect").    We aee thua that there 

are two types of effects direct effects,   such as (i) and (ii),   and coupled 

effects,   such as (iii) and (iv). 

It !H assumed as a postulate of the thermodynamics of Irreversible 

processes that,   for situations not too far removed from equilibrium,   the 

fluxes may be written in the form: 

Jti 2-m ^m-"-• (2.2!) 

which states that the fluxes are linear functions of the .!rivi»g forces.    The 

anm   are referred to as the phe no me no logic al coefficients.    The diagonal 

elements   ami   are the coefficients which represent the direct effects; the 

off diagonal elemenets   anin (n i m)    are the phenomenological coefficients 

for the coupled effects.    The expressions for the fluxes obtained by statistical 

mechanical considerations are of this form.    Also,   such "linear" relations 

are found in connection with other types of physical and chemical phenomena-- 

for example,   in ther mo magnetic effect"*,   the r mo galvanic effects.,   electrokinetic 
II 

effects,   etc.        Linear relations should alwayb be adequate when the systems 

are sufficiently close to equilibrium.    Hence the postulate of F.q.   (2.2) defines 

the range of applicability of the thermodynamics of irreversible processes. 

Complete diaciissioiia of these applications may be found in the recent mono 
graph of de Groat (12). 
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The fundamental theorem of the thernnodynamis-s of ivreversfble processes 

i# due to Qnsager (31).    This theorem states that for & ^proper chuice*' of the 

fluxes and forces 

^ ^ o nm    ~    -"wn 

These equations are commorly referred to as Onsagei*s reciprocal relations, 

and are useful for relating coupled effects such as the Soret and D«f«ur effects, 

Let us now consider the application of the linear law of Eq.   (2. Z) and the 

Onsager reciprocal relations to the study of transport phenomena in fluids, 

for which a proper choice of the fluxes and forces is indicated in Table 1. 

When the linear law for the fluxes is applied to the flux vectors which are 

equivalent to the first approximation in the Chapman-Enskog kinetic theory. 

That is,  one obtains expressions fof the flux vectors which are linear in the 

first derivatives of the macroscopic variables and do net contain higher 

derivatives or powers of the first derivatives. 

Hence,   if the system under consideration in in a state not too far removed 

from equilibrium,   the linear law of Eq.   (Z. Z) indicates that each of the co-^ponents 

of the fluxes in Table 1 may be written as a linear combination of all the component* 

of all the forces in Table I.    However,   if the system is lsotropic,   it may be shown 

that those terms which correspond to a coupling of tensors whose orders differ 

by an odd number do not occur.    Thue no coupling occurs between   jj   or   q*   ' 

(both vectors or first-order tensors) and   p'v)   (a second ord^r tensor)   or    re 

(a scalar or 3?ro-order tensor).    Coupling does occur between the heat flux 

q and the mas? flux   j;    .   resulting in the Sar<?t effect and the Dafour effect. 
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Coupling also occurs between the momentum flux and the chemic&i reaction 

rates,   since there is a difference of two in the order of the teneoxa.    No 

experimental observations of such an effect have,   however,   been reported, 

b.    Momentum Flux and the Viscosity Coefficients 

The application of the linear law JEq.   (2. 2)) to the components of the 

viscous pressure tensor   p*v'    and the force    - Vv   gives: 

Phk   -   - 2L, L> aw (6vk/bxH) (24) 
n»i    w-i 

hk 
The set of phenomenological coefficients   anm   is a matrix of eighty-on« 

elements,   hut all of *hp*ie are not independent,.    From OR^a^er'* relation* 

one sees that   *nrn   m   ejbk      ', *na since the pressure tfans^r is defiued to be 

symmetric,   it can be si own that   anm   «   anm   .    Then Sq.   (2.4) can be 

simplified to: 

n»i   ro«i 

hk: 
so that there are only thirty-svx: independent    '£&*:££ fcoJ4!nT.«$'      ^m   • 

If the further assumption is made that the fluid is  Lftotropic,   then it can h* 

hk shown that the number of independent   anm     is reduced to two.     The pressure 

tensor then has the form: 

^(V' -  -p. [(V*) + (vV)1] + (|P-- «)(V-ir) I (2.J 

in which    U-      and      K»      are the two independent phenomenological coefficients, 

which are called the coefficients? of sheer and bulk viscosity respectively. 

& Typical diagonal and non-diagonal elements of thia tensor are: 

f^xx •    2P-ay  + ^5i   "AW r ^ + ii) }      r^ -• "Kay + *) *  P3 
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The c%N»ffit; lent of shear viscosity is important in fW*« in *W«h SHseessivii 

plane Isvsra of the fluid move with different velocities.    The coefficient of 

bulk viscosity is important in the pure expansion of a fluid. 

In a dilute gas made up of molecules without inters*! £s.£z~sz o4 frscdcrsi, 

the coefficient of bulk viscosity is identically sero.    It lya* lts*.Ji *h*wr> that the 

presencs of internal degrees of freedom,  even in a dilute g&s.  lntreiducaa s 

finite bulk', viscosity| and the bulk viscosity has also he#s. S-SOW* UiM ssn-wrc 

i». a douse gas or liquio.    Nevertheless the effect is fiQSOWtti? MW/ijtYt, satd it is 

often sufficiently accurate to neglect the Dulk viscosity.   A survey oi i,h* topic 

of   bulk viscosity has been given by Karim and Roaeahsflug;. {£«)»   If the fluid 

under consideration is incompressible (then   ( V*y) n 0 ),  the last wr«, of 

Eq.  (Z.6) vanishes,   and the coefficient cf bulk vi-casii,4J*»B n*l «at«r into 

the equation. 

For the flow of a fluid in the x-direction with a velocity gradient in the 

y-direction only,  Elq.  («i.6) simplifies to: 

hj1     =      -f. (**/>*) (27) 
n i 

This is the well-known Newton* s law of viscosity which stats* that the 

resistance to viscous forces is proportional to the vels-elty *,*r#,»ienft,. the 

constant of proportionality being the coefficient of shssjf %$$«£«&».    The co- 

efficient o. shear viscosity is determined experimentally by considering the 

fiOW oi a fluid in a syeteia of soitirlently simple geometry thai the equation 

of motion can b<r: solved after the expression for ih« viscous sfcreoa given in 

Eq.  (2  ?) '.iaa been substituted into it.    In this way one Analyses the d«ia for 
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capillary tube viscosimetars in terms of Poisemlle'* law,   and th« data for 

concentric cylinder (Couettft) viscosimeters in terms of the    Mar gules 

equation.Eq.   (2.7) then forms the basis for the entire subject of   visconimatry 

of newtonian fluids. 

Tho*«5 «ur«> oaany fluidt which do not behave according to the above 

t'newtc>ni».nM) form of the pressure tsnsor,   and such fluids are referred to as 

"non-newtonian**.    Examples of non-newtovHan substances are glass,   plastics 

melts,  drilling muds,    "bouncing putty, H toothpaste,   and concrete.    For these 

substances the assumption of small gradients,   marie in connection with Eq. 

(2. Z),   is net tenable.    Hence the pressure tensor depends upon higher deriva- 

tives of the velocity  components and on higher powers of the velocity gradient". 

The inclusion of these additional terms would require the introduction of addi- 

tional phenomenologlcal coefficients; approaches of thi« sort have been quite 

limited. 

In connection with the establishment of this relation between the shear 

stress and the shear rate fur non-newtonicr: flow,   considerable success has 

been obtained by Eyring and his collaborators    (15) who have applied the meth- 

ods of reaction rate theory to various pMolulated physical pictures of the elemen- 

tary processes going on   inside a fJuid.    It is this theory whi.;h predicts that the 

shear viscosity depends on the external force according the the hyperbolic sine 

law. 

Actually most of the studies of the flow behavior of non-ntwtnnian substances 

have been based on simple analytical assumptions    concerning the    relationship 

between the sheai  stress   (pL\,)   and the shear raie    (3v„/dy).    This is also 
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tantamcunt to   Baying that some assumption is mad* roncbraitig the dependence 

of the coefficient of viscosity on the impressed shear force.    By means trf these 

assumed "models",   om can solve the equation of motion for various airaple ge- 

ometries (such as capillary tubes,   concentric cylinders,   etc.) and obtain for- 

mulae which are useful for the viscosimetry of non-newtonian substances.    (33). 

Formulae of this sort are available for various idealized non-newtonian models, 

touch as the Bingham plastic,   thixotropic substances,   and   power-law models 

(which jirit assume that the shear rate varies as some power of the shear stress, 

»r rice versa).    Unfortunately many investigators continue to analyze the flaw 

data for non-newtonian substances in term* of Poisouitle's law and other new- 

tonian formulae,   thereby obtaining "effective viscosities-'' which are valuable 

only for analyzing flow in systems geometrically similar to the viscosity meas- 

urement apparatus.    The study of the flow and deformation of these no n-new Ionian 

substances is now generally classified under the heading of •'rheology*"   TMa 

subject includes the behavior of substances under stress,   all the way from pure 

elastic deformation (Hooke's law to pure viscous flow (Newtou** law). 

c.    Mass and Meat Flux and the Coefficients of Diffusion and Thermal 

Conductivity 

The application of the linear law (Eq.(2. 2)) to the components of the heat 

and mass flux vectors and the corresponding driving forces given in Table I 

gives (after some algebraic rearrangement): 
nt 

qT -    - a* V InT      -   p g (aoj/pj) dj to) 

y% *  - 3(0 v in r    - h2 tetj /fj) dj [?$ 
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in which the driving forceB   di ,   closely related to the-A.    ,   axe defined thus; 

dj   -    Cft/P) Aj   -   (fl/p)  V In p   ,  (p./n) g^F, 
tV 

In the above equations the index   0 re fern to the temperature v^.-ishle; the other 

the other subscripts   (i,  j,  k) refer to the cherfiicai specie}* present in the mix- 

ture.    The following restrictions have to be placed QQ the   a( j:    ji)   because of 

the Oneager relations the    at .    are symmetric;   (ii)   because of the fact that the 

j ^   are nor all independent   (i.e.,    J\j jj   -   C ),  the   a^j   must in addition satis - 

fy the relations:    ^t^;    -     <•'->{ *\ i   m   Q- 

The app.ic;.«.ion of the Q^sager relations to the phenornenological coefficients 

wit.'   one   0    subscript gives: 

r 
ai0   -   %   =   Di (?r.) 

and we have equated these elements to the -rnulticomponent thermal diffusion 

coefficient,"   DjT .    Thus the reciprocal relation in Eq.   (2. 11)   gives the con- 

nection between the coupled effects known as thermal-diffusion and the diffusion- 

thermo effects. 

The application of the Onaager relations to the remaining pheuvmenoiogicni 

coefficients gives: 
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We ii»»w have to relate these quantities to the "BiulU«»o**>0»oni diffusion coet- 
II 

iicieata. "   DJJ.    but this has to he done in such « vay tiiit 1ZH,  \'&. IZ\   is obeyed." 

Inasmuch as the   D| •      are customarily defined so thtki Un»   L», j    an» identically 

*aro (9).   the relationships between the   D, ,   and the   Hi .   ife rather involved: 
rv 

atj     -     (rfy foz p) [ _ om. mj Djj    +   Z f k^^K Ak faQ 

Mi 
It shotild be noted that these   Dj.    axe not symmetric with reapeet to MB. Inter- 

change of the subscripts   i   and   j    . 

For a -two-component mixture the "mullU:ompnii«ot uiff>i*ion coefficient!*" 
Dj ;   become the ordinary binary diffusion coefficient*   oOij    »   and then 
c&ij - obji •    F« two-component systems it is alao customary to define a 
•HViermal diffu»i»»'» ratio,"   fcj.,    according to the relation; 

1 <<'•*> 1 

For this definition of   k-.,  comp^jarnt "l'< goes to the cold regies if   k.j. >• 0 
and to the hot region if   k^.<  0.    The diffusion coefficient*   <»Qtj   and the 
thermal diffusion ratio    k      defined thus are in aggooasMUki wHh the ac- 
cepted definitions of the previous workers,   and in particular with the text- 
books ot Chapman and Cowling aad Grew and Ibbsfife). 

For a three -component mixture ths multicomponent diffusion coefficients 
are not equal to the ordinary binary diffusion coefficient*. For sxampie, 
the kinetic theory of dilute multicomponent gas wixturoa^showa that: 

T n3[(rrWrnz)3btt -   £12. ] 
TV      =   Cf^      I   1   "*"    ""^  (2.Wb) 
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We now can substitute the results of the application of the Onsager relations 

(Eq.   (2. 11) and (2. 13)) into the expressions for the heat and mass fluxes (Eq. 

(2. 8) and (29)) to obtain: 

f  .     -a*   VlnT      - ^itDjVppdj (2.13) 

H   =    - DT
{ VlnT    T    (nVf) Z m^j D^dj (Zte) 

in which the phenomenological coefficient* a.Q g still appears. The c\uor>i)bj <\0/']l 

is not quite the coefficient of thermal conductivity as customarily defined, j-.e, 

can be seen in the following way: Imagine that Eq. (2. 16) is solved for the el- 

and that these quantities are in tuvn substituted into Eq. (2. 15). This will then 

indicate that q* ' has other terms proportional to VT besides the term con- 

taining A . When all of these terms a.'e combined, the coefficient of the re- 
00 

suiting term is detined to be the coefficient of thermal conductivity.     This par- 

ticular choice for the definition of     is made for the sake of consistency with 

existing treatises on kinetic theory,   such as that of Chapman and Cowling    (6) . 

When the rearrangements just described have been performed,   one finally 

obtains for the components of the energy flux vector (as given in Eq.   {1. 6)) 

(2.17) 

(2.18) 

following: 

q^ - -'A  VT 

+ Z(Ht. 

)^ 
IT) The first terir.,     q        ,   ie the contribution to the energy flux due to thermal 

conduction and       is the coefficient of thermal conductivity.     The  dicond term, 
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q       ,   is the sss?^y flux associated with the diffusion.*]. pv<M>;«a«g occurring. 

These   tws t«r*»* *jr» the most important contributions to the energy flux. 

The tsird Urn;**,,    q»j is related to {but not equal to) the energy flux resulting 

from the X>«s*?x effect.    Actually Eq.   (2. 19) is rigorously applicable only to 

a dilute ga»msxture.    The expression for   q'P'   for .a general fluid is 

extremely complex sad the effect is small. 

In the anew? set oi equations we have given no esqpreaaion for     q>r' ,  the 

energy flust Awe ie Mditttiftn.    This set of aquations applies only to systems 

near equilibria***    li xadiativc energy transport is taking place and if the 

radiation is in equilibrium with the matter,  then the expression for   q^r' 

is of the same form AS Eq.  (2. 17) for   q        •    This condition is usually not 

satisfied and the radinUv* energy flux depends in a detailed manner on the 

frequency and Intensity of the radiation and the properties of the material/* 

From 'Eq**  (~&r 16) ajad (2, 10) one obtains the various contributions to 

the mass flux vector(as given in Eq.  (1.4)),  thus: 

j}] -   + (rf/to) g m,nij Dij [(ry'p)X (ty, /£pJT>|> 7pk ] iZ2o) 

,   .•,.,.1,   • n»    . _ ..;   i  ;«,;,."< 

\r .   + (Hty) £ m^ £><j [(JJVJ /mj) - ^P,/f)] V In f> (2.21) 

f   =    + (^ Z «£•«, DO [(fj /W)(f fj -  2, ftt )] (2.22) 

]i'T> -   -D[ VlnT fas 

3   The subject of radiative heat transfer is diftcuseed further in MTGL,   §11.3. 



W1S-ONR   7 
12 May   i<?54 

-24- 

The first contribution,    jjj ' ,   is the most important one--the flux due to a 

concentration gradient.    This expression indicates that the correct driving 

force for diffusion is a rather complicated function of the chemical potentials 

of all the components in the mixture.    The mass flux due to a gradient in the 

static pressure,    j\V> ••   has keen studied only slightly beeasuse of   its rela- 

tively negligible importance.    The mass-flux due to forr«td diffusion,    jj   ', 

is important when aystsms containing ions are under consideration.    And the 

(T) last term, j.     ,   is the contribution to the *nass flux due to thermal diffusion. 

This contribution can be neglected except under conditions of large terpera 

ture gradients such a* are carefully maintained in devices such as the Clusius- 

Dickel 'column (16). •    ' 

For two-component systems the mass-flux vectors become considerably 

simpler.    The general expression fefr the flux of component M1M iSr 

j, - p,V^ -  - (nVj>)tnmtAa(d, + kTV In T) (ZZ4) 

in which we have also indicated the relation between the flux vector and the 

diffusion velocity,    V\     •    The latter is the velocity with which component 

"1"   moves with respect to the mass average velocity.    Inasmuch as the bi 

nary diffusion constants are symmetric ( C&12 •   ^21    ^»   an<* 8ince   j,  3 •   "3i 

it follows that: 
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Yr-y,    -    (nVn,nx)a>(l(4i+kTV>»T) fzM)f 

This equation is the  usual starving point for discussion of thermal diffusion. 

^or a two--component system In which thermal,   pressure,   and forced dif- 

fusion effects can be neglected,   the expression for the miuB flux given in 

Eq.(2.24) becomes; 

j, . -(rrn£/jjp)m,m2<k,2 V|/, -   -(nVp)(ntkT/p)mimaA»2'7!na, (2.2i) 

in which   aj    is the activity of component   "1".     From this it can be seen that 

it iB the chemical potential or th^ activity which ahould correctly be considered 

to be the driving force for two-component diffusion.    When the additional assmp 

tion is made thai the components are dilute  gases,   then Eq.(2. 26) becomes: 

j,  .   _ (nVp) hn,mi e&iz Vx; (2.2.7) 

This expression can be used Jn systems where there are temperature gradients, 

provided that they are not sufficiently large that the thermal diffusion contri- 

bution needs to be added. 

9 
^ For a dilute monatomic gas this result has beer, generalized for multicom- 

pon<?nt mixtures: 

r' 
ij  - (VlnT) Z(ninj/n^Ij)[(Dj/V.Jrnj)-(I)i,/r!;mO] 

Y 
For systems at constant temperature and pressure and with no external 
forces^   this simplifies to: 

-vP{ « |<*j<:'£i (35*-If) tew 
in which i he "resistance factors,"    cC    ,   are defined as    (RT)2" /p56, .,   and 
Cj   is the molar concentration of fpeH.es    t      .    This result,   originally   due 
to Maxwell and Stefan,   is commonly used as the startiu^ poie* for discussions 
of ^nulticompontsni diffusion ty$\. 
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It has been previously mentioned that the flux vector* defined ahirve are 

fluxes with respect to a coordinate ayucem moving with the mas* average 

velocity at the gas.    Sometimes it it convenient to define fluxes with resp?.~t 

to other coordinate frarr.as..    Two examples will illustrate the imporLance of 

Bpecifying the reference frame for the fluxes:    (i)   The flux,    J   ,   in moles 

per unit ares y»»r unit timr   «\th respect to the molar average velocity (under 

the same reetrictions of Eq. (2. 27)) is; 

J,  -   - (p^,,/RT)Vx! (zzi) 

(ii)   The  molar flux of component "1"   -A-ith respect to a stationary coordi>- 

nate system is: 

The fir«t term on the right hand side is the molar flux of component   ,;i"   by 

diffusion,   and the second term is that due to the mass motion of the fluid. 

Eq. (2. 29) is the basic starting point for the discussion of chemical engineer* 

ing mass-transfer problems.    A large number of the important applications 

involve either of two assumptions;    (i)   diffusion of   »'l"   through stagnant 

"2"   ,   so that   N2 * 0 ;   and   (ii)   equimolal counter diffusion for which   N.    * 

-N-  .    The applications of Eq.(2. 29) to various important industrial diffu- 

sional operations have been givnn by Sherwood and Pigford.(3£|). 

The expressions given i« this section for the momentum £1«» (J5<». (2.6)) 

the components of the heat flus (Eq*.(2. 1Y)   to   (?. 19}).   »n<L the components 

of the mass flux (Eqs.{2. 20) to (2. 23)) are general results obtaU.ed from the 

thermodynamics of irreversible processes and which apply to both gases and 
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liquids.    They are,   of coursr    consistent with the expressions for the flux 

vectors for dilute monatomic: gases,  which have been previously obtained 

from the rigorous kinetic theory of gases. 

When the expressions for the  components of the masR flux (Eqs.(2. 20) 

to (2. 23) ) are substituted into the equation of continuity for component    i 

(Eq.(l. la)),   one obtains the diffusion equation in its most general form. 

When it is assumed that thermal,   pressure,   and forced diffueion is absent, 

and when it is further assumed that the diffusion is two-component equimolal 

I' counttrdiffusion,   then the diffusion equation simplifies to Fick'a second law' 

of diffusion.    When the expression for the momentum flux (2.6) is substituted 

into the equation cf motic:. (Eq.(l. 2) ),   then,   if the bulk viscosity is zero,   one 

obtains the usual Navier-Stokes equations.    When the expression for the energy 

flux (Eqs.   (2. 17) top (2. 19)) is put into the energy balance equation in terms of 

the temperature (Eq. (1.9)) one obtains the heat flow equation in very general 

form.    When the assumption is made that viscous dissipation effects and pv 

effectu are negligible,   then the temperature equation for a pure fluid assumes 

a form which is mathematically analogous to Pick's second law of diffusion. 

Hence w« see that the equations oi change and the expressions for the fluxes 

provide starting points for heat,   momentum,   and mass transfer studies which 

are more general than the usual starting equations.    Since these equations and 

expressions have all been written in vector and tensor form,   they may be used 

to get the correct starting poisit for calculations in cartesian...   cylindrical,   or 

sp'verical coordinates. 
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3.     The Transport Co'sffic ientE  in Terms o(  Inter molecular  Forces? 

In order to use any results based on solutions of the equations of change, 

one must know the  values of the transport coefficients involved,   and in some 

problems the temperature,   density,   and concentration dependence of these 

quantities is also needed      Whenever possible,   of course,   experimental data 

Should be used it they are available.    Otherwise,   one should use the best meth 

od of calculation which i» consistent with the accuracy desired.    In general,   the 

moat reliable methods are those baaed on statistical mechanical formulae,   which 

relate the bulk properties in terms of the inter mo iecular forces.    Kence this sec- 

tion begins with a summary of the various types of forces between molecule?,. 
A. 

a.    Intermolecuiar Forces and Potential Energy Functions 

In   principle it is possible to determine the force between a pair of molecules 

from a priori  quantum mechanic el calculations,   inasmuch as the description of 

the mechanics of any collection of nuclei and electrons is given by the Schro- 

dingsr wave equation.    In practice,   however,  it is possible to obtain solutions 

to the Schrodmger equation for only rather simple molecular systems,   and then 

only after making numerous approximations the physical reality of which is dif- 

ficult to assess.    The quantum mechanical approach has nevertheless provided 

a considerable amount of information of A semi-quantitative character,   widen 

has been of great valu<» in establishing the approximate functional form of the 

interaction energies. 

An elementary discussion oi inter mo lee alar forces »nA empirical potential 
energy functions may be found in MTGL    §1.3,   and a complete treatment is 
given  in MTGL,   Chs.   12, 13,   and   14.    See also the earlier review articles 
by London (26)  and Margenau (27). 
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In the kinetic theory formulae for the transport coefficients it i« the po- 

tential energy of interaction   ^PO^     which appears rather than the force of 

interaction   F(r)    between the molecules in tlie fluid.    For two spherical non- 

polar molecules the force »nd potential energy are simply related according 

to the equation: 

roo (30 
F(r)   -   -dcp/dr    -?       <ftr)- Jr   F(r)dr 

For the  interaction between more complex mo? ^cules,   the potential energy is 

a function not only of the inter molecular separation,  but also of the angles 

describing the mutual orientation of the molecules.    From such an angle - 

dependent potential energy function one   can derive both the force ar.d torque 

of interaction as a function of tl & distance and orientation. 

It is customary,  although somewhat arbitrary,  to divide intormolecular 

forces into two types--short-range forces and long-range forces.    The short- 

range forces arise when the molecules come close enough together for their 

electron clouds to overlap appreciably.    These forces are repulsive and often 

highly directional.    There are some experimental indications of the nature of 

short  range inter molecular forces from crystal structure,   properties of sur- 

faced,   and other properties,   but most of our information comes from the spe- 

cific quantum mechanical calculations which have been niacis for specific mole- 

cular interactions.    These calculations usually are not highly accurate,   inas- 

much   as many of *h? integrals encountered are so complicated that they are 

either approximated or simply nwglaclad. 
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^e J£2fcl32^8S ^orce8»   on the other hand,   may h«» tveated in a (airly rigor- 

our manner,    furthermore,    it ie easy to give formulae fo:  various types of 

interaction which are applicable to a variety of types of molecules.    The long- 

range forcre may be subdivided into electrostatic,   induclion,   and dispersion 

forces.    The electrostatic forces are those between the various multipoles of 

the molecules and are described bv electrostatics.    The induction forces are 

those reculting from the fact that a multipole In tins molecule can induce a 

multipole in the other molecule,   which in turn reacts with the multipole of the 

first molecule.    The dispersion forces result,   in a sense,   from the interaction 

of th£ instantaneous multipoles which exist even in neutral symmetrical mole- 

cules because of the electronic motion;   these forces cannot be described cor- 

rectly in terms of a simple phyeical picture and are derived by quantum me- 

chanical second-order perturbation theory. 

For nonpolar molecules the most important long-range contribution to the 

potential energy of interaction is the dispersion £r ce proportional to the in- 

verse sixth power of the intermolecular separation. The short-range force, 

which is known I be approximately exponential in form, a«m htt fu»thei—ay— 

prottiwnBt^rit entpcmeatml in fewt, can be further approximated by an inverse 

power dependence, usually r~*2. It is these ccr.sfderationB wMeh form the 

justification for the Lennari   Jones   (6-12) potential: 

<tfr)« 4€[(a/r)tt-(o/r)'] (3.2) 

in which O" is that value of the separation for which the potential energy is 

zero,   and €   is the maximum attractive energy.     This potential energy 
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I unction has been used with considerable success for the calculation of many 

equilibrium and non-equilibrium properties of dilute and moderately dense 

gases composed of molecules which are nonpolar and reasonable spherical. 

Empirical potential energy functions,   such as ths Lermard-Jones potential, 

have played a very important role in connei.cion with the determination of 

inter molecular forces.    Many physical properties can be expressed by means 

of statistical mechanics in terms of integrals involving the inter molecular 

potential energy function.     When an empirical potential function is used,  the»»e 

integrals can be evaluated and the results expressed in. terms of the parameters 

(such as er and 6 in the Lenniird -Jones potential)'.    Experimental data for some 

bulk property can then be used in conjunction with these results io detei mine 

the potential parameters.    Once the potential parameters are known,  other 

physical properties can then be calculated.    This interrelation of bulk proper 

ties and intermolecular forces is further discussed in connection with Eqs.(3. 7), 

(3.8),   and (3.9).    Much more quantitative information about inter molecular 

forces has been obtained by means of this s« mi-empirical approach than by 

direct quantum mechanical calculation. 

f The following Lennard-Jones potential calculations are described in MTGL; 
second and third vixi«l coefficients,   §2.6;   Joul*-Thomson coefficient,   §3.6; 
the Leonard-Jones—Devonshire equation of state for dense gases and liquidB, 
§4.7;   quantum calculations of the second virial coefficient,   §§6. 4c and 6. 5c; 
transport properties of dilute ga»es,   §8.4   Complete tables of all tabulated 
functions are given. 
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Extensive calculations hava recently been made     for Another empirical 

function for non-polar molecules^  namely the modi/Led Buckingham (6-exp) 

potential energy function.    This potential contain* the   r"°   attractive term, 

but the repulsive component is represented by an exponential term thus: 

r 
06 

cf(r)  
1-  %r 

i^[*d-i)]-(-fcr (3-1) 

ir. -which there are three adjustable parameters:   the maximum energy of 

attraction   g  ,  the separation corresponding to that energy   r      .   and the 

parameter    QL  which Is a measure of the steepness of the energy of repul- 

sion.       This intermolecular potential function represent* an improvement 

over the Lennard-Jones ootential and has been found to give somewhat better 

agreement between calculated and experimental transport coefficients and 

virial coefficients,   x>»rticulariy for   H->   and   He. 

f   Calculations of Mason   (28)   of the transport coefficients for the modified 
Buckingham potnetial are described in MTGL,   §8.4.    The corresponding 
calculations of Rice and Hirschfelder   (34)   are described in MTGL,,   §3. 7. 
Further discussion of the modified Buckingham potential has been given by 
Mason and Rice   (29). 

*    Actually for very small values of the inter zrolecula; separation   i ,  the 
function given in Eq.  (3. 3) has a maximum value and approaches .minus 
infinity as   r   approaches zero.    This would correspond to very strong 
attraction at very small reparations.    Hence,   when Eq,  (3. 3)  '• used in 
Statistical snechanical calculations,  one can set  CPfr)   * ao for values of 

tat fr*t\ H~ **H «f c « %   ' rAat the spur ion* maximum 
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b.    The Transport Coefficients of Dilute Gases'5, 

The earliest attempts to ielai«> the transport coefficient* to iut**mi»lecular 

forces were based on the assumption, that molecules could   be represented as 

rigid spheres with diameter     0^ .    Tlvese early theories were baseri oa the 

concept of the "mean free   path"--the average distance traversed by the mole- 

cules between collisions.    A simple calculation shows that this quantity is giv- 

r— 2 2. en by   L   =   (kT/v 2 pjro-   *•),    The quantity   TTO^     appearing in the denominator 

is called the "collision cross-section"   for the rigid-spherical molecule.    This 

cross-section appears in ail the expressions for tb.6 transport coefficienta and 

represents the cross-.sectional area of the imaginary sphere surrounding a mole- 

cule,   into which the center of an approaching molecule cannot penetrate. 

According to the simple kinetic theory the traasport coefficients can all be 

expressed in terms of the mean free path and the average nolecular velocity 

v   =     V8dT/n*m .    Thus the coefficients o.' self-diffusion,     viscosity,   and ther- 

mal conductivity of a pure gas are given by: 

£     -     (1/3)*L        -      Ca -^£- j (%4) 

LL       -        (1/5) f*L        = r      ^^LL (3-5) 
^       ircrR* 

A        =       (1/3)f>6rL       • Q     Jjt•£L     p (3.t) 

S  Transport properties of dilute gases and binary gas mixtures have been 
treated in a highly mathematical form in the book of Chapman and Cowling(6). 
An elementary discussion of kinetic theory is given in MTGL,   §1.2,   and 
the kinetic theory of muiiicomponent gas mixture* is given in MTG.L,    Chs. 
7 and °.    Formulae in practical unite axe given,  and complete tables for 
uce in conduction with these formulae may be found in the appendixes.    A 
nummary of the present status of calculating transport and other proper- 
ties of gases and liquids has been vjiven la a survey article written by the 
authors (1). 

* lb ft doeutSfot-k is   confuted +o Vr*, coniideroftan of «fy_ proprrta d \>i»* SutghweC. 'rirrvt ** trance-* 
Grffficicni wh^h chiwectcni.i  nr.sst-fransV i» ««. to-flfkunt 4  tefdiffinion, whith  •> #*- vtenHtiui** 
of perhUu of ftc AIM HWU «r><*  s,z*.   A^o«^ this   |i a  scW**** »rt#r.»i ^wrffc,. .tun* »ha^ 
MIW bpp.^W TV*   •nfcnafott* of  ht*g .sofop,. <^ Hu *(&»».  cf 0,**>   and    per* jbrmi" 
rtre  t*vr.orru.r,»   .-hith («n C* dt oibid   l-y   &|f-difiujibn   fcrmjlM, 
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in   which   Cj ,    C^ ,    and   C-A    are constants; and   C^. is the specific heat 

per unit UKABU,   which   is   (3k/2m)   fur xnoaatomic substances.    According 

to the simple kinetic theory treatment all these quantities are   (2/i) .    Ac- 

cording to the detailed theory of Chapman and Cowling each of these quantities 

is different:   Cj,   *   (3/8) ,      C^ *   (5/16) ,    and   C^  «   (25/32) .    This is an 

indication that the transport of mass,   momentum,   and energy cannot be 

treated exactly analogously to one another as ie done In lh* simple treat- 

ments.    Since for an ideal gas,     p   =   mp/kT ,  Eq.  (3.4) 'ndicates that the 

coefficient of self-diffusion should vary inversely to the pressure and 

directly as the 3/2 power of the temperature.    Accordiug to Eqs.  (3. 5) and (3.6) 

the coefficients of v'scosity and thermal conductivity of a dilute gas should 

be independent of the pressure and directly proportional to the square root 

of the temperature.    Thus the simple theory predicts the correct pressure 

dependence of the dilute g*» transport coefficients and comes close to giving 

the correct temperature dependence.    It also provided the early kinetic 

theory workers with a means for estimating moleculav diameters from 

buLe. properties. 

The rigorous kinetic theory developed by Chapman and Enukog and 

described in the rrvc-DOgraph of Chapman and Cowling (6) gives an indication 

as to how the results of the f.Jjnple kinetic theory have to he modified in 

order to apply to real molecules rather th»ti rigid spheres.    The rigorous 

theory does not in the course of its development employ ths concept of the 

mean free path.    The rigorous theorv han as its starting peint the BoltKmann 

integro-differential equation for the velocity distribution function.    Although 
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the details o£ the mathematical development are quite intricate the results 

for pure substance* may be expressed in   4 simple form reminiscent of 

the results given above i'o* the eimple kinetic theory.    Thus the rigorous 

expressions for the firat approximation!? to th? coefficients of self-diffusion, 

viscosity,   and thermal conductivity for a dilute monatomic gas are: 

r ui   . a •/rmnk:f" (3.6) 
L^Jl Ife   TO* top 

in which the   Li -functions indicate the deviation of real gas behavior from 

rigid sphere behavior. [ 

The    Lh -tunctions are complicated integrals which depend upon the 

force law between the -molecules.    When the JLennard-Jonef, potential is 

used,    o~  in Eqs.   (3.7),   (3.8),   and (3.9) is the    er  ir.  the Lennard-Jones 

potential.    The   <Xjj -functions are,   then,   functions of a dimensionless 

temperature   kT/6     ,   in which the    e     is the maximum energy of attrac- 

|   In terms of the notation used in MTGL: 

Actually there is a whole set of   SX^' in terms of which the transport 
properties can be expressed.    The ones with indices (1,1) and (2, 2) are 
the most important,    tut additional   £)< -functions are required for mixtures 
and for higher approximations,    All of the   tD   -functions needed lor calcula- 
tions may be found in MTGL. (IS) for the following potential energy functions: 
rigid spheres,   point centers of repulsion,   the Sutherland model,   the square 
well,   the .Lennard-Jones (6-12) potential,   and a modified Buckingham (£»-exp) 
potential. 
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tion appealing in the L*nn&rd-Jones potential function.    Hence the transport 

coefficients are expressed as universal functions of a reduced temperature 

and depend parametxically on the constantn  O"    arid.    £    which »x* characteristic 

of the substance under consideration.    Hence if cr and e   are known tax uonuc 

substance,  the self-diffusion,   viscosity,  or thermal conductivity can be calcu- 

lated from the above aquation by use of the tabulations available for the     1L • 

function*.   Ox,   if the coefficient of viscosity,  for rx«n»i»>,  ii krown for •»»* 

substance   at two different temperatures,  then o' and 6  for that substance can 

easily be found by the aolutioa of two simultaneous equations.    This illustrates 

the way in which inter molecular force information is obtained from the naeasur- 

ments of bulk properties. 

Eqs.   (3. 7.   a; 9) are based en the rigorous kinetic theory for aaoaatomic 

gases.    The us? of F.qu.  (3. 7,   8) for diffusion and viscosity of polyatomic: gaseK 

turns out to be quite a good approximation,  provided that the molecules are not 

polar iiiu :;ot too elongated.    £q.  (3.9) for thermal conductivity,  however,  must 

be modified for polyatomic molecules by means of the approximate "Eucken cor- 

rection" thus: 

Until the further development of the existing theories for the transport phenomena 

of polyatomic molecules   (42,   ±0).   the Eucken   CcTecti'on       can be used to a 

f reasonably good approximation,' 

| A theoretical justification for the Kuckea correction is given in MTGL,   §7. 6b. 
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Besides formulae and tables for computing the firat approitimatkm to the 

transport coefficients of pure substances as discussed above,  there are also 

tabulated functions available for the Lennard-Jonss potential for «s« with formu- 

lae for the transport coefficients of binary and multicompontnt a»i»tnres and for 

the higher corrections to the tranuport coefficients.    The formulae are <quite 

lengthy and are not given here since they are given in full elsewhere.    Generally 

speaking these results are easy to use and give excellent agreement with the ex- 
(1,18) 

pcrimental data.    Quantum effects have been shown to be negligible at room 

temperature and above,  even for helium and hydrogen (tt,IS). 

The situation */ith respect to dilute gases is then quite satisfactory at the 

present time,   particularly as far as nonpolar molecules are concerned.    Much 

remains to be done on ihe development of the kinetic theory of polyatomic g*ses 

and particularly the applications to polar gases.    Aside from the very general 

and highly mathematical developments of Wang Chang and Uhlenbeck   (42) and 

de Boer   (10),  the only other work which has been done on the kinetic theory of 

non-spherical molecules has beon that on several special models, -such as per- 

fectly rough spheres   (5,   3?.),   loaded spheres (23),  and rigid ellipsoids   (22). 

c.    Transport Coefficients of Dense Gases and Liquids V* 

At the pre seat time there are f'>ur main approaches usad in the study of the 

transport properties of dense gases and liquids.    None of these methods can bt 

regarded as entirely satisfactory,   and indeed none of them r-*lly provides usa- 

ble results as fair at. interrelating bulk properties with intermolecular forceb 

ia concerneH.    W- describe then* methods in order of increasing s&at hematic a 1 

complexity. 
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Tfoas principle af corresponding states,   which has been of great value tor 

estimating ^p-V-T   and thermodynamic properties of fluids   (20),  can also 

be applied to the correlation of transport coefficient data.    That is.  the tranu* 

poxt cceffients divided by their values at the critical paint,    u_iy be expressed 

as universal functions of the reduced pressure and reduced temperature: 

jJLr  -     ^/Mc      -     \Xr(\>rX) (iM) 

Ar  -    A/7\c      -     nrtprjr) (S.I3I) 

in which   Tr   *   T/Tc   and   pr   =   p/pc«    Equation   (3. 12)   provides the basis 

for Uyehara and Watson's   (41,   20}   generalized viscosity chart,  and Eq.  (3. 13) 

for Gamson's   (14)   generalized thermal conductivity chart.    The latter was 

prepared with relatively few experimental data.    As upon as more data on high 

density transport coefficients are available,  they should be correlated in the 

form of generalized charts based on the principle of corresponding states. 

^The material presented in this section is trusted snore extensively in IATGL, 
Ch. 9. 

• Other methodic of reducing the variables have been, suggested.    One can,   for 
example,  reduce the transport coefficients by dividing them by the approp- 
riate combination of critical constants,  thu«: 

hi-    y^V^FV    -   MfV,t) (S.12.a) 
la snoihtr m*thod one divides the transport coafficiaa* by Ha, limiting sero- 
presyure value,  thus; 

f;*»    j*./ju,«   - ML*(pr>Tr) (3.12b) 
This method was used by Comings,   May land,   and Egly   (7)   in the preparation 
of a generalised chart. 
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1     The theory of rate processe» an developed by Eyring ar?d his collaborators   (15) 

has been moderately successful in explaining the transport phenomena in liquids 

On a simple pictorial basis.    Such an approach does not load to frprsssioas for 

the transport coefficients in terms at' inter molecular forces,  but rather to re- 

lations between various macroscopic quantities: 

[L =   nh  e*p (0=406 Z^ap/RT) (3.14) 

i   hh   exp (3.8 Tb/T) (3,4*) 

& =   n,/3kT/fx (5il5) 

X-   VOT k n* rH* e [7«J*] (3(0 

A =    2.80   k  n^5 V"^ c l l>o»^ato«r»»c"| (5.,7) 
L liquid*    J 

In these relations     h   is Planck's (constant and   c   is the speed of sound in the 

liquid.    Eq.    (3.14a)   is a simplified form of Eq.    (3.14)   made possible by the 

use of Trouton's rule.    Equation   (3. 16a)   is a generalisation oi Eq.   (3. 16) 

made possible by the use of a modified Eucken correction.    Th* Eyring theory 

has been used to study the transport properties of liquids composed of nonspheri- 

cal molecules such as long ch&in hydrocarbons and high polymerc      It ie the only 

theory of transport phenoraeo* whic*> predicts nor«~n»wt»Gian flow. 

The kinetic theory for rigid spheres developed by Easkofl   (6.18)    is probably 

the best theory avaUable at the present iiine for describing the transport coef- 

ficients of dense gases.    The big difficulty in the development of a kinetic theory 

fcr condensed systems is that one must understand certain, sspact* of three- 

molecule and higher order collisions.    For the rigid sphere mode!,   however^ 

it is theoretically     rnvpossibl* for three molecules tc collide at exactly the same 
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mcmfRt.    Hence a complete theory may b<- developed by considering two-body 

collisions only.    The final reuulta of th* Fnskog tAeftry may be Summarised in 

tex-ma of the following relations,   which interrelate the reduced transport coef- 

ficients (based en aero pressure values) and the compressibility factor for 

rigid spheres: 

(f^XV/ho) -   (l/y)  H-    0.8   t     0.7fcly (3.17) 

(K/^MV/W -    1-002^ (3.18) 

(A/VKtf/bo) -    0/y)   4-   I.Z   +   0.755.y (3.19) 

(fc/WWbo)  -    (1/^ (3.zo)t 

In these relation*}   hQ    »   (Z/^irNo^,      and 

j «    (bV/RT) - 1   -    (boA>) + 0.6t50 0^*4 (3.2& 

+ am? (u/Vf + ans (b^/Vf* - 
which is obtained from the vlrial equation af   atate for rigid spheres.    Although 

these results were obt»i.>ed for rigid   spheres,   Enskog showed that for the availa- 

ble experimental data the following procedure could be used for real gases:   One 

replaces the pressure   p   !i   Eq.  (3.21)   by the »Uheru6Al pressure**    T(dp/2fl~) 

so that   y   may be determined froin the experimental   p-'V-T   data from the 

relations 

( For rigid eplieres Eqs. (3. 21) and (3. 21a) are the sanr*, but such is not the 

rise for real molecules.) Then one fits the minimum is isn't curve of the vis- 

cosity veraus    y   in order to specify a value of   b    .    It will be interesting to 

¥  <Sy  may be caiculan-d &s SO = Mli/pRT    whers «w     is the coefficient of eeif- 
'llf'odit'iM*!. calculated  ti    1    atm.   pressure according w Eq.   »4.7). 
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teat thi* wuethod further when more experimental data become available.    The 

Enakog &h«ery has been extended Lo binary mixtures by Thorn* {&)* 

The jiStfthods of non-equilibrium statistical mechanics have been applied to 
(20 

the prcblsm of transport phenomena in dense systems by Kirkwooo^auxi by Born 

a»d Green   ti).    The finial results are given in terms of a rumwejailibrlum radial 

distribution function.    This function is the solution of an Iffr-aval equation,   which, 

however,  involve* the next higher order distribution function-    A ^superposition 

approximation" la introduced in ord».r to get rid of the higher-order distribution 

function, bat the validity sf this assumption has not been, fully assessed.    At the 

present time only limited calculation* have been made,  and hence the nutted 

does «5t yet provide a means for practi cal computation.    It is hoped that this 

approach will ultimately lead to the calculation of dense gas properties with 

accuracy comparable to that for dilute gases according to the Chapnaan-Suskog 

theory, 

Acknawlo4|ilPO»t*t 
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Notation 

Letters 

at *   activity of speciea MiM 

•   phe no me no logical 
coefficient* 

tb     «   (2/2)JTN«rR
3 

T\/T\t- 

^ 

fi 

3 
6 
H 
r 

jt 

Ji 

•   specific heat at con- 
stant w,lur«e 

at   driving force defined 
in Eq.   2. 10 

s   substantial derivative 
operator 

=   si'ulticuroponent dif- 
fusion coefficients 

* binary diffusion coef- 
ficients 

a rnulticonoponent thermal 
diffusion coefficients 

= external force acting on 
species   i , 

* rate of irreversible pro- 
duction of entropy 

a   Gibbs free energy 

=   enthalpy 

at    unit tensor 
* nva«>s flux of species   i 
' |gm/cm" sec) with re- 

spect to mass average 
velocity,      v 

* mass flux of species   i 
(moies/cm2 sec) vith 
respect to rnolar aver- 
age velocity 

k   - 

K:   - 

L   , 

m   m 

Irtftl    — 

n 

flux* s in the thermo- 
dynamics of irrevers- 
ible, tharsawdyuamics 

Boltjuaaana'a ceestant 

diffusion ratio 

rate of production of 
species    i   by chewi- 
cai reaction (gm/sec) 

mean Cxee path in kinetic 
theory 

maW.nlar ncs? of species   i 

nnmbejf density (number of 
•suil*cules per unit volume) 

fl(    •   number density of species   i 

nc   a   number, of chemical species in 
multicomponent system 

Mi- 

ll   - 

P   - 

Pi • 

it 

3 * 

nunaLer ot reactions in multi- 
eewsyseesit system 

mass flax of   i   (in*l««/cm2 sec) 
•atiih-***«*«•? to stationary axes 

Avogadvo's number 

static or**sure 

parti*! pressure of species i 

pressure te?i&'*r 

viscous part »t pressure tensor 

energy flux vector 

heat fta v«4«- 
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Notation 

|^       *   distance between two col- 
liding molecules 

l£      •   rate of the   8th chemical 
reaction 

rv      «   gas constant 

O      »   iratropy 

X       «   time 

•p" 
I »   absolute temperature 

II «   noriaai boiling tempera- 
ture 

TT 
C*»      =   iincxiiai energy 

*2£     =   muss average velocity 
(stream velocity) 

i 

V •   avex».g2 molecular speed 

V •   volume 

•trW 
V ««   diffusion velocity 

X^      •   mol fraction of species   i 

X^    *   V*"  coordinate —x,   y.  o* z. 

JCn   -   generalised forces in the 
thermody/namics of irre- 
versible thermodynamics 

y       a   quantity defined in   §3c 

jT     *   chemical affinity ior the   . 
•**   reaction 

Greek letters 

Hi *   coefficient of bulk viscosity 

sdu    *   "resistance factors*' 
*J 

€      w   maximum energy of attrac- 
tion in inter molecular 
ootsntial energy fciietion 

A        s   coefficient of thermal con- 
ductivity 

AA . 

P. 

TT 

P 

ft 

cr 

°R 

2* 

WD 

0*) 

driving force defined in Eq. 
1. 13 

coefficient o£ viscosity 

- chemical potential of   itn 

species (permoiocuie) 

s    3.14159... 

-. 
•=   xnaan density of fluid 

•   mass density of   i"1   com- 
pcn».'nt in fluid 

- parameter in intermolecuiai- 
potential energy function 

- diameter of rigid sphere 
molecule 

• 

• entropy fbut 

• inter molecular potential 
energy function 

AiJA 

p    K. *   functions of the reduced 
p^'* temperature which are 

introdv.c*d in Eqs.   3. 7, 8, 9 

Subscripts 
;i t 

M.k a   chemical spoclea present in 
taulticomponent mixture 

-   quantities pertaining to sth 
c he mic fC re action 

*   critical quantities 

x   cpjahtitieb reduced by division 
by the corresponding critical 
quantities 
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Notation 

Superscripts 

O      r.   ideal gas pi-opertie8 

T      3   transpose of a tensor ox 
dyadic    product 

Above Symbols 

*      =   quantity per unit mass 

r^'     u   quantity per mole 

— =   partial molal quantity 

Below Symbols 

— = vector quantity 

;c: = tensor quantity 

Vector and Tensor Operations 

i» j»«      *.  unlt vec*ors in x,   y,   K, 
- direction* 

VT * L(dTOx) + i(bT/dy) + k (bVto) 

(V«i) = (**/*) + (*$/*/> + (bir« ,'bm) 

(V-p)x *    (&p» /ax) + (bp^ /dy) + (6Po / »z) 

(f>*vjr) •   &, Cbv*/a*) + |^(&ok/^) + fen (**/*•) 

4-^ (6V*)   f    ^(6^/ay)   -r   ^t(^/c)r) 

DT/Dt.   -yr/bt + (ir»V)T 
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